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• Classify encrypted traffic into its belonging application 

Open-world mobile encrypted classification

• Breaks the closed-world assumption 

• Deal with the unseen applications



Closed-world Encrypted Traffic Classification

Mobile 
Encrypted 

Traffic

Classifier

Existing
Applications

Existing state-of-the-art methods

SoB [1] 91.22% TPR 0.08% FPR

MaMPF [2] 96.40% TPR 0.20% FPR

FS-Net [3] 99.14% TPR 0.05% FPR

MAAF [4] 98.69% Acc 98.64% F1
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Symposium on Quality of Service (IWQoS). IEEE, 2018, pp. 1–10.
[3] C. Liu, L. He, G. Xiong, Z. Cao, and Z. Li, “Fs-net: A flow sequence network for encrypted traffic classification,” in 2019 IEEE International Conference on Computer Communications (Infocom). IEEE, 
2019, pp. 1–9.
[4] Y. Chen, T. Zang, Y. Zhang, Y. Zhou, and Y. Wang, “Rethinking encrypted traffic classification: A multi-attribute associated fingerprint approach,” in 2019 IEEE 27th International Conference on 
Network Protocols (ICNP). IEEE, 2019, pp. 1–11.
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Mobile 
Encrypted 

Traffic

Initial
Classifier

More
Applications

When we find new applications
Zhang et al. [5] [6]

Existing
Applications

[5] J. Zhang, F. Li, H. Wu, and F. Ye, “Autonomous model update scheme for deep learning based network traffic classifiers,” in 2019 IEEE Global Communications Conference (GLOBECOM). IEEE, 2019, pp. 1–6.
[6] J. Zhang, F. Li, F. Ye, and H. Wu, “Autonomous unknown-application filtering and labeling for dl-based traffic classifier update,” in 2020 IEEE International Conference on Computer Communications 
(Infocom). IEEE, 2020, pp. 1–9.
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Naive Incremental Learning Methods

1. Retraining the updated classifier from scratch
• Considerable training time and effort
• Expansion of the dataset

2. Fine-tuning the existing classifier
• catastrophic forgetting problem
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Incremental Learning based on (OvR) Strategy

One vs Rest Strategy

• 𝑛 binary classifiers. The classifier ℎ𝑖 correspond to 𝑖𝑡ℎ mobile application. 

• The binary classifier ℎ𝑖 considers 𝑖𝑡ℎ application as positive while other applications as negative. 

• The system integrates all binary classifiers to make classification.
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Incremental Learning based on (OvR) Strategy

Incremental Learning

• Collect the dataset of new applications.

• Build extra new binary classifiers for the new applications.

• Retrain the outdated classifier that accept more than the retraining threshold  τ of the new 

applications’ traffic
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Binary Classifier

1. A neural network-based Implementation.

2. Take the first k packet lengths of flows as 

classifier input.

3. Use Gated Recurrent Unit (GRU) to 

process the sequence inputs.

4. Adopt a sigmoid function to normalize 

classification probability ∈ (0-1). Neural Binary Classification Network



Sample Selection

1. Maintain the size of dataset when adding new applications.



Sample Selection

1. Maintain the size of dataset when adding new applications.

2. Select new samples and remove leftover samples through herding 

selection. 



Sample Selection

1. Maintain the size of dataset when adding new applications.

2. Select new samples and remove leftover samples through herding 

selection. 

3. Sequentially selects samples that keeps its vector average nearest to the 

original vector average.



Evaluation Dataset

• A manually collected dataset provided 

by MAAF [1].

• 77,278 real-world encrypted flows of 

16 popular mobile applications.

[1] Y. Chen, T. Zang, Y. Zhang, Y. Zhou, and Y. Wang, “Rethinking encrypted traffic 
classification: A multi-attribute associated fingerprint approach,” in 2019 IEEE 27th 
International Conference on Network Protocols (ICNP). IEEE, 2019, pp. 1–11.
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Analysis of the Retraining Threshold

• Both the F1-scores and the number of 

retrained classifiers declines with the 

retraining threshold.

• When the retraining threshold increases 

from 0 to 0.1, the number of retrained 

classifiers decreases sharply while the 

classifier only loses a little F1-scores.

Performance Evaluation on Different 
Retraining Thresholds
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Analysis of the Sample Selection

• The F1-score of both IL-Herding and IL-

Random increases.

• The IL-Herding gradually approaches IL-Base 

with the enrichment of reserved samples. 

• The IL-Herding shows overall higher 

classification accuracy than the IL-Random.

Comparison Results on Different Sample
Numbers
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Analysis of the Number of Applications

• The F1-scores of both the IL-Herding and 

MC-Herding slowly decrease with the 

increase of the number of applications.
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Analysis of the Number of Applications

• The F1-scores of both the IL-Herding and 

MC-Herding slowly decrease with the 

increase of the number of applications.

• The number of retrained classifiers 

generally declines from 2.0 to 1.0 with the 

increase in the number of applications.

Comparison Results on Different Numbers
of Applications



• For more details, please contact chenyige@iie.ac.cn

• Questions & Answers

mailto:chenyige@iie.ac.cn

