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Closed-world mobile encrypted classification

* Classity encrypted traffic into I1ts belonging application

Open-world mobile encrypted classification

* Breaks the closed-world assumption

* Deal with the unseen applications
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Nalve Incremental Learning Methods

1. Retraining the updated classifier from scratch
* Considerable training time and effort
* Expansion of the dataset

2. Fine-tuning the existing classifier
* catastrophic forgetting problem
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Incremental Learning based on (OvR) Strategy

Classificatio

Initial System Updated System

Incremental Learning

* Collect the dataset of new applications.
* Build extra new binary classifiers for the new applications.

* Retrain the outdated classifier that accept more than the retraining threshold T of the new

applications’ traffic
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Sample Selection

1. Maintain the size of dataset when adding new applications.

2. Select new samples and remove leftover samples through herding

selection.

3. Sequentially selects samples that keeps Its vector average nearest to the

original vector average.



Fvaluation Dataset

THE STATISTIC OF 16 APPLICATION TRACESETS

TABLE 1I

* A manually collected dataset provided Devel R Manually Collected Traceset
cveloper pplication Flows Packets Domain  Cert Both!
by MAAF [1]. Alipay 5201 315234 164% 96.3% 97.3%
Alibaba Taobao? 3231 291348  93.9% 96.8% 99.4%
AMap? 3624 114513 91.7% 98.8%  99.4%
e 77,278 real-world encrypted flows of Baida | Baidu Search | 4732 181971 52.5% 90.3% 94.3%
Baidu Map? 5544 215920 40.0% 89.2%  93.8%
- Lot Facebook 4148 526289  463% 822% 87.4%
16 popular mobile applications. Facebook | | 0 1379 343800 970%  S8% 3180
CTwitter ] Twitter 4463 167166  45.6% 89.7% 93.9%
Sina Weibo 3817 127057 954% 952%  99.6%
Airbnb Airbnb 5843 875837  76.0% 67.7% 82.2%
Linkedin | Linkedin 4203 160614  914% 91.8% 98.5%
Evernote Evernote 7504 202557 98.4% 48.1% 98.5%
Blued Blued 4833 478467  734% 55.6%  73.8%
Ele Ele 6740 99193  98.9% 98.5%  99.9%
Github Github 4431 151355  98.6% 96.4%  98.8%
Yirendai | Yirendai 4585 61356  98.1% 97.5%  99.2%
Total 77278 4312686 71.7% 79.9%  90.7%

[1]Y.Chen, T. Zang, Y. Zhang, Y. Zhou, and Y. Wang, “Rethinking encrypted traffic
classification: A multi-attribute associated fingerprint approach,” in 2019 |EEE 27th
International Conference on Network Protocols (ICNP). IEEE, 2019, pp. 1-11.
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Analysis of the Retraining Threshold

* Both the F1-scores and the number of
retrained classifiers declines with the

retraining threshold.
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Analysis of the Retraining Threshold

* Both the F1-scores and the number of
retrained classifiers declines with the

retraining threshold.

* When the retraining threshold increases
from O to 0.1, the number of retrained
classifiers decreases sharply while the

classifier only loses a little F1-scores.
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Analysis of the Sample Selection

* The Fl1-score of both IL-Herding and IL-

Random increases.
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Analysis of the Sample Selection

* The Fl1-score of both IL-Herding and IL-

Random increases.

* The IL-Herding gradually approaches IL-Base

with the enrichment of reserved samples.

* The IL-Herding shows overall higher

classification accuracy than the IL-Random.
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Analysis of the Number of Applications
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Analysis of the Number of Applications
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Analysis of the Number of Applications

* The Fl-scores of both the IL-Herding and

MC-Herding slowly decrease with the

Increase of the number of applications.

* The number of retrained classifiers

generally declines from 2.0 to 1.0 with the

Increase In the number of applications.
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* For more details, please contact chenyige@iie.ac.cn

e Questions & Answers
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